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Abstract. Compressive full-Stokes spectropolarimetric imaging (SPI), integrating passive polarization modulator
(PM) into general imaging spectrometer, is powerful enough to capture high-dimensional information via
incomplete measurement; a reconstruction algorithm is needed to recover 3D data cube (x , y , and λ) for each
Stokes parameter. However, existing PMs usually consist of complex elements and enslave to accurate
polarization calibration, current algorithms suffer from poor imaging quality and are subject to noise
perturbation. In this work, we present a single multiple-order retarder followed a polarizer to implement
passive spectropolarimetric modulation. After building a unified forward imaging model for SPI, we propose
a deep image prior plus sparsity prior algorithm for high-quality reconstruction. The method based on untrained
network does not need training data or accurate polarization calibration and can simultaneously reconstruct
the 3D data cube and achieve self-calibration. Furthermore, we integrate the simplest PM into our miniature
snapshot imaging spectrometer to form a single-shot SPI prototype. Both simulations and experiments verify
the feasibility and outperformance of our SPI scheme. It provides a paradigm that allows general spectral
imaging systems to become passive full-Stokes SPI systems by integrating the simplest PM without
changing their intrinsic mechanism.
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1 Introduction
High-dimensional optical information, such as irradiance, spec-
trum, space, polarization, and phase, are vital for comprehen-
sively noninvasive characterization of targets over diverse
scenes.1,2 The acquisition of maximal information using a single
integrating system is highly desirable in consideration of
volume, weight, integration, portability, and cost.3–8 As shown
in Fig. 1, spectropolarimetric imaging (SPI), which integrates a
polarization modulator (PM) into an imaging spectrometer, is a
kind of such a versatile integrating system,5,9–15 which can obtain
a spatiospectrally resolved 3D data cube (x, y, and λ) for each of
interested Stokes parameters (S0, S1, S2, and S3). It has aroused
wide applications in the fields of aerosol detection,16 planetary
exploration,17 remote sensing,18 biomedical diagnosis,19,20 etc.

The design chain of SPI system involves three aspects: the
PM, the imaging spectrometer, and a reconstruction algorithm.
It is extremely meaningful to design a kind of advanced PM and
algorithm that can directly adapt to general imaging spectrom-
eters (multispectral/hyperspectral systems), including scanning
(whisk broom, push broom, windowing, and framing)21 and
snapshot modes.6,7

The PM is a key component that determines the number of
measurements in the polarization dimensionality. According to
the sampling mechanism, the PMs can be classified into two
types5,7: a well-sampled PM and an undersampled PM. For the
former, the number of polarization measurements is equal to
the number of interested Stokes parameters. In this case, time-
sequence active scanning hardware in a single optical path or
snapshot passive hardware using multiple parallel optical paths
are usually employed.5 As a result, the acquisition, storage, and
processing of these measurements may result in significant time*Address all correspondence to Tingkui Mu, tkmu@mail.xjtu.edu.cn
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costs, power consumption, space/memory footprint, and pos-
sible human resource costs. Meanwhile, designing and building
such hardware is expensive and complex.7 For the latter, the
number of measurements is less than the number of interested
Stokes parameters. In this case, part of the burden from hard-
ware is shifted to a postprocessing algorithm by designing
the active or passive undersampled PMs and jointly developing
corresponding reconstruction algorithms. As a result, the SPI
based on the undersampled PM becomes a kind of computa-
tional imaging mechanism that includes a hardware encoder
plus a software decoder.

As a typical passive undersampled PM scheme, double
multiple-order retarders (MORs) followed a polarizer (termed
DR-PM) along a single optical path have the advantages of

passive modulation, compact structure, and freedom design
space, which have led to many SPI system designs based on
existing general imaging spectrometers.9–15 Initially, the Fourier
transform method (FTM) based on an analytically physical
model was developed and then frequently used to extract polari-
zation channels in the Fourier domain of modulated spectra.10

Although the FTM is a straightforward method, it has some
drawbacks, such as channel cross talk, band-limited high-
frequency loss, sensitivity to noise, and needing accurate polari-
zation calibration.22–26 Later, optimization-based algorithms,
such as compressive sensing (CS) with prior knowledge, have
been proposed to overcome the above issues.27,28 While the high-
frequency loss and noise sensitivity have been alleviated, accu-
rate polarization calibration with extra precise elements/setups

Fig. 1 Schematic of the SPI framework with the passive SR-PM scheme. (a) Imaging formation by
integrating the SR-PM with general spectrometer. (b) Forward mathematical model with different
colors indicating different spectral bands. (c) Combined sparse representations in transform
domain to achieve faster convergence. (d) Untrained network acts as implicit regularization
and generator. (e) The reconstruction method is transferred from the CS method with apparent
regularization and manual fine-tuning to the unconstrained DIP that uses an untrained network
without manual tuning regularization, then to the DIP-SP with the sparse representation constraint
and self-calibration ability, which achieves the best performance.
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is still needed. The rigorous design of an SPI system is thus
transferred to the polarization calibration system, which is a
change in form but not in content. Meanwhile, we have devel-
oped a continuous sliding iterative method (CSIM) without the
need for polarization calibration,29,30 which can converge well by
just letting the initialization be of nominal value. The spectro-
polarimetric resolution recovered from the CS and CSIM retains
the intrinsic spectral resolution of the imaging spectrometer
used. This point is very important for the imaging spectrometers
that only have modest spectral resolution.12,19,31,32 However, the
FTM, CS, and CSIM methods are still subject to noise pertur-
bation, since the SPI systems usually have lower flux due to
a narrow spectral band and the use of a polarizer. In addition,
the FTM and CS methods are enslaved to systematic errors
originating from double MORs. Therefore, much labor is spent
on the compensation and calibration of the systematic errors
such as phase shift, azimuthal misalignment, and temperature
effects.22–26 Recently, data-driven deep-learning-based techniques
have been proposed to enhance reconstruction quality.33–35

However, the collection of a large amount of labeled data for
kinds of application scenes is challenging. Further, the training
data and trained networks are usually system-specific, which
is difficult to be extended to other SPI systems. Conversely,
model-driven reconstruction methods are still expected to
label the data for feeding such data-driven deep-learning-based
approaches.

To avoid the above dilemma, it is important to determine
whether it is feasible to construct the simplest undersampled
full-Stokes PM just using a single MOR followed a polarizer
(termed SR-PM) along a single optical path and build novel
model-driven method to reconstruct a spatiospectrally resolved
3D cube for each of four Stokes parameters (S0, S1, S2, and S3)
from incomplete measurement. Although such an SR-PM
scheme definitely has the advantages of volume, alignment,
assembly, and cost compared to the DR-PM scheme, the
reconstruction algorithm crisis would be aggravated in the ab-
sence of clarity. Recently, state-of-the-art deep-image prior (DIP)
methods using untrained networks have been proposed for
image denoise and restoration with provable convergence.36–47

Therein, the structure of an untrained network with randomly
initialized weights can function as a prior on image statistics
without any training, mainly because deep neural networks
are good at representing and generating realistic images.48–50

Specifically, an untrained network is paired with a physically
differentiable forward-imaging model in which the network
weights are updated through a loss function comparing the ex-
perimental measurement and the generated measurement from
the network output passed through the forward imaging model.
Therefore, the DIP method is expected to be promising to solve
the reconstruction issues of the SPI. However, preliminary ap-
plications of the DIP methods on other computational imaging
problems38–47, would not account for practical issues in the SPI
systems. It was found that if we directly use the DIP method to
solve the inverse problem of the SPI, the inversion results tend to
be trapped in a pseudo-solution, where all generated images
show the similar still detail, but modulated with constants
(see Secs. 4 and 5), mainly because the problem in the SPI
is more challenging owing to its high dimensionality. This kind
of challenge is our motivation to further constrain the DIP by
incorporating proper prior knowledge about optical physics
in systems or scenes. That is, the physical imaging models of
the SPI should be built reasonably, and further regularization

should be introduced for the inverse problem. Hereby, we devise
a DIP plus sparsity prior (DIP-SP) method to make the encoding
and decoding of the SR-PM scheme become feasible and more
efficient. Meanwhile, self-calibration is achieved with the algo-
rithm itself; then accurate polarization calibration is not nec-
essary.

Toward the above-mentioned ends, the novelty of this paper
through the encoding hardware to decoding software is three-
fold: (1) The principle and forward-imaging model of SPI based
on the SR-PM is presented. (2) By incorporating SP into the SPI
forward model, a physically constrained DIP-SP method based
on an untrained network is developed. In particular, the method
does not need any training data and accurate polarization cali-
bration and can simultaneously reconstruct the 3D data cube of
each Stokes parameter and achieve the self-calibration of mea-
surement matrix. (3) As an instance, we integrate the SR-PM in
front of our miniature snapshot imaging spectrometer to form a
single-shot SPI prototype. Both simulation and experimental
results show that the proposed DIP-SP algorithms make the
SR-PM feasible and more robust to noisy perturbation. The rest
of paper is organized as follows. Section 2 presents the SPI
forward model. The proposed DIP-SP method is presented in
Sec. 3. Extensive simulations and real-world experiments using
our miniature SPI prototype are provided in Sec. 4. Section 5
provides a discussion and Sec. 6 provides the conclusion.

2 SPI Forward Model
As shown in Fig. 1(a), a full-Stokes SPI system is built by in-
tegrating the SR-PM into a general imaging spectrometer.5–7,21

Herein, the SR-PM consists of a fixed MOR following a hori-
zontally linear polarizer (HLP), which is the simplest under-
sampled full-Stokes PM. The sampling mechanism of the SPI
mainly consists of two steps. First, the spatiospectrally distrib-
uted 3D data cube (x, y, and λ) for each of four Stokes param-
eters (S0, S1, S2, and S3) are compressively encoded by the
SR-PM. Second, the encoded spectropolarimetric data cube is
then recorded by the imaging spectrometer used. The working
mode of the imaging spectrometer can be whisk broom, push
broom, windowing, framing, or snapshot. Either way, the
encoded spectropolarimetric data cube should be output for
subsequent reconstruction.

Mathematically, a 2D scene can be characterized by a spa-
tiospectrally distributed 3D data cube (x, y, and λ) for each of
the Stokes parameters (S0, S1, S2, and S3), as shown in the right
part of Fig. 1(a). The data cube slices of the k’th spectral band
are expressed as fSðkÞgNλ

k¼1 ∈ ℝNx×Ny×Ns , where Nx, Ny, Nλ, and
Ns denote the scene height, scene width, the number of spectral
bands, and the number of interested Stokes parameters (herein
Ns ¼ 4), respectively. It is first compressively modulated by
the SR-PM with measurement matrix fMðkÞgNλ

k¼1 ∈ ℝNx×Ny×Ns ;
then the encoded spectropolarimetric slice fIðkÞgNλ

k¼1 ∈ ℝNx×Ny

is recorded by the imaging spectrometer as

IðkÞ ¼
XNs−1

n¼0

MðkÞ
n ⊙SðkÞn þ εðkÞ; (1)

where fεðkÞgNλ
k¼1 ∈ ℝNx×Ny indicates noise;MðkÞ

n ¼ MðkÞð∶; ∶; nÞ
and SðkÞn ¼ SðkÞð∶; ∶; nÞ denote the n’th measurement matrix
(n ¼ 0,1;…; Ns − 1) and corresponding 2D distribution of
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Stokes parameter, respectively; and ⊙ represents the Hadamard
(element-wise) product.

As shown in Fig. 1(b), the forward model of SPI at the k’th
spectral band can be linearly expressed as

IðkÞ ¼ MðkÞSðkÞ þ εðkÞ; (2)

where fIðkÞgNλ
k¼1 ¼ fVecðIðkÞÞgNλ

k¼1 ∈ ℝNxNy and fεðkÞgNλ
k¼1 ¼

fVecðεðkÞÞgNλ
k¼1 ∈ ℝNxNy with Vecð·Þ vectorizing the 2D matrix

by lexicographically stacking columns. Correspondingly, the
vectorization fSðkÞgNλ

k¼1 ∈ ℝNxNyNs of the whole Stokes param-
eters fSðkÞgNλ

k¼1 ∈ ℝNx×Ny×Ns is

SðkÞ ¼ VecðSðkÞÞ
¼ ½VecðSðkÞ0 ÞT;VecðSðkÞ1 ÞT;VecðSðkÞ2 ÞT;VecðSðkÞ3 ÞT�T; (3)

where T indicates transpose operation. The measurement matrix
MðkÞ ∈ ℝNxNy×NxNyNs is a concatenation of diagonal matrices,

MðkÞ ¼ 1

2

n
diag½VecðMðkÞ

0 Þ�; diag½VecðMðkÞ
1 Þ�;

diag½VecðMðkÞ
2 Þ�; diag½VecðMðkÞ

3 Þ�
o
; (4)

where the constant coefficient 1/2 means the flux is halved
due to the use of a polarizer. The slice of each spectral band
is characterized by similar expressions. Correspondingly, the
measurement of all spectral bands is obtained by integrating
all slices,

I ¼ MS þ E; (5)

where

I ¼ ½ðIð1ÞÞT;…; ðIðkÞÞT;…; ðIðNλÞÞT�T; (6a)

M ¼ diag½Mð1Þ;…;MðkÞ;…;MðNλÞ�; (6b)

S ¼ ½ðSð1ÞÞT;…; ðSðkÞÞT;…; ðSðNλÞÞT�T; (6c)

E ¼ ½ðεð1ÞÞT;…; ðεðkÞÞT;…; ðεðNλÞÞT�T: (6d)

As can be seen, the modulation mechanism of SR-PM is
characterized by the measurement matrix MðkÞ, which can be
derived using Muller–Stokes calculus as (Note 1 in the
Supplementary Material)

MðkÞ
0 ¼ ðqþ rÞ;

MðkÞ
1 ¼ ðq − rÞ½cos2 2θ þ sin2 2θ cos δðkÞ�;

MðkÞ
2 ¼ ðq − rÞsin2 δðkÞ

2
sin 4θ;

MðkÞ
3 ¼ −ðq − rÞ sin 2θ sin δðkÞ; (7)

where q and r are the maximum and minimum transmit-
tance that account for the imperfection of the polarizer;

δðkÞ ¼ 2πd½nðkÞe − nðkÞo �∕λðkÞ; d is the thickness, λðkÞ is the
k’th wavelength; and nðkÞe and nðkÞo are the extraordinary and
ordinary refractive indices of the MOR, respectively. It is
observed that the number and complexity of effective argu-
ments depend on the two free parameters ðθ; dÞ. If we set
θ ¼ 0°∕45°∕90°∕135° to simplify the arguments, only partial
Stokes parameters could be modulated. In addition, if we let
the MOR be an achromatic waveplate for simplification, the sys-
tem spectral range would be narrowed and unnecessary cost
would be induced. To simultaneously modulate all Ns ¼ 4
Stokes parameters (S0, S1, S2, and S3) with generality, we
should let 0° < θ < 180° and θ ≠ 45°∕90°∕135° regardless of
the phase retardance δðkÞ, although the arguments would be
not so clear and simple. The effects of free parameters ðθ; dÞ
on the reconstruction quality will be explored in Sec. 5 for
the optimal measurement matrix MðkÞ and its tolerance. For
the DR-PM scheme,9–15 we also can derive the corresponding
measurement matrix, and the following methods also adapt to
its modulation.

3 Reconstruction Methods
For the inverse problem of SPI, the measurement does not
resemble the reconstructed image; instead, the scene is related
to the measurement through the forward-imaging model that de-
scribes the physics of the image formation problem. To recon-
struct Stokes parameters at different wavelengths from Eq. (5),
one may use the pseudo-inverse of measurement matrix M as
a fast method. However, it should be noted that the forward-
imaging model in Eqs. (2) or (5) is ill-posed, since the number
of unknowns is Ns ¼ 4 times that of knowns in the measure-
ment. This means that the measurement is incomplete, and com-
putational reconstruction is needed. As a matter of convenience,
it is recommended to independently reconstruct the Stokes
parameters at each wavelength. We formulate the inverse prob-
lem by creating the mathematical model with an inspiration
from the CS. The inverse problem aims to recover the image
slices of the four Stokes parameters from the encoded spectro-
polarimetric slice via proper regularization,

min
SðkÞ

1

2
kIðkÞ −MðkÞSðkÞk22 þ τRðSðkÞÞ; (8)

where k · k2 is the data-fidelity term and RðSðkÞÞ is the regulari-
zation term with a tuning parameter τ. To obtain the 3D data
cube of each Stokes parameter with high quality, generally
the measurement matrix MðkÞ should be calibrated accurately.
However, it is hard to solve Eq. (8) directly, even using
state-of-the-art solvers [e.g., the gradient projection for sparse
reconstruction (GPSR)51 or the two-step iterative shrinkage/
thresholding algorithm (TwIST)]52 with elaborately handcrafted
regularization such as the sparsity or total variation (TV). Its
noise robustness and reconstruction quality are subject to hand-
crafted regularizations or scene types, as shown in Fig. 1(e).
In addition, it is necessary that the measurement matrix MðkÞ
be definitely known using accurate polarization calibration.
Thus, it is desirable to develop an advanced algorithm with
powerful regularization but without manual tuning of parame-
ters, meanwhile incorporating self-calibration of the measure-
ment matrix MðkÞ into the algorithm.
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3.1 DIP Plus SP Method

The state-of-the-art DIP via untrained network has been pro-
posed for the inverse problem of computational imaging with
provable convergence36,37 and shown to be particularly effective
for many applications.38–47 In the following sections, we use DIP
to solve the SPI inverse problem. As shown in Fig. 1(d), assum-
ing the mapping function GðkÞ

Θ̂
ð·Þ of the untrained network is

specified by a set of parameters ΘðkÞ, the inverse problem in
Eq. (8) is then replaced as

Θ̂ðkÞ ¼ arg min
ΘðkÞ

kIðkÞ −MðkÞGðkÞ
Θ ðXÞk22; (9)

where X indicates the input of the untrained network. It is in-
teresting to note that the function of regularization term RðSðkÞÞ
in Eq. (8) is replaced by the implicit DIP captured by the un-
trained networkGðkÞ

Θ̂
ð·Þ in the data-fidelity term. With the known

measurement matrixMðkÞ, the iterative optimization of Eq. (9) is
to find a set of optimal parameters Θ̂ðkÞ of the untrained network
that map the input X to the desired signal as

ŜðkÞ ¼ GðkÞ
Θ̂ ðXÞ: (10)

As can be seen, the main advantage of the DIP method is that
the input is just the X without any need of the ground truth (GT)
SðkÞ. However, we found that it is also hard to optimize such
preliminary DIP method in Eq. (9) with satisfactory results.
The inversion results tend to be trapped in a pseudo-solution,
where all generated images show similar detail, but modulated
with constants (see Sec. 4.2 and Sec. 5), mainly because the SPI
is higher-dimensional and more ill-posed compared to previous
applications.38–47 In addition, the measurement matrix MðkÞ in
Eq. (9) also needs to be definitely determined before the
reconstruction process. These kinds of challenges are our mo-
tivation to further constrain the DIP by introducing reasonable
regularization.

Since the SP has been shown to be more effective on com-
putational imaging problems,53 it is reasonable to incorporate the
SP into the DIP for solving the SPI problem, forming the DIP-
SP method. Therefore, as shown in Fig. 1(c), we make a prior
assumption that the Stokes parameters SðkÞ of the 2D scene can be
sparsely represented on suitable bases fBðkÞ

n gNλ
k¼1 ∈ ℝNxNy×Nc as

SðkÞ ¼ BðkÞsðkÞ; (11)

BðkÞ ¼ diag½BðkÞ
0 ; BðkÞ

1 ;…; BðkÞ
Ns−1�; (12)

where fsðkÞgNλ
k¼1 ∈ ℝNcNs denote the bases coefficients and Nc is

the number of bases coefficients. The bases can be obtained from
some transform domains (e.g., undecimated wavelet transform,
discrete Fourier transform, discrete Hartley transform, discrete
cosine transform, Legendre polynomials) or dictionary learning.
In this work, we select the bases BðkÞ

n from the combined
domains, including discrete cosine transform and Legendre poly-
nomials, to maximize earnings of the SP constraint (Note 2 in
the Supplementary Material). The Legendre polynomials are an
orthogonal basis that are useful to model signals such as linear,
quadratic, and cubic polynomials. Further, their scale is small
relative to other bases, therefore increasing the speed of calcula-
tion. The discrete cosine transform coefficients are helpful in
capturing sinusoidal variations. The bases coefficients sðkÞ ¼
½ðsðkÞL ÞT; ðsðkÞD ÞT�T are from the combination of two bases

BðkÞ
n ¼ ½BðkÞ

n;L; B
ðkÞ
n;D�. The number of total bases coefficients Nc

is the summation of the Legendre polynomials coefficients L
and the discrete cosine transform coefficients D ¼ NxNy.

Then, as shown in Fig. 2, we incorporate the SP constraint in
Eq. (11) into the unconstrained DIP optimization in Eq. (9) as

fΘ̂ðkÞ; M̂ðkÞg ¼ arg min
ΘðkÞ;MðkÞ

kIðkÞ −MðkÞBðkÞGðkÞ
Θ ðXÞk22: (13)

As a result, the prior captured by the untrained network is
enhanced due to the additional SP constraint, making conver-
gence easier. In addition, it should be pointed out that we let
the network parameters ΘðkÞ and measurement matrix MðkÞ be
optimized simultaneously. Therefore, it is not necessary to
explicitly know the measurement matrix MðkÞ, depending on
the accurate polarization calibration. Only a warm initialization
of MðkÞ is needed for convergence and self-calibration (see

discussion in Sec. 5). The optimized mapping function GðkÞ
Θ̂
ð·Þ

is now used to estimate the bases coefficients sðkÞ,

ŝðkÞ ¼ GðkÞ
Θ̂ ðXÞ: (14)

The final Stokes parameters ŜðkÞ are derived using Eq. (10).
The input X can be random input with similar dimension36–38

or the practical measurement IðkÞ.40,41 If the texture features
of the measured spectropolarimetric image IðkÞ resemble the

Fig. 2 Processing pipeline of the proposed DIP-SP method.
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reconstructed images, it is helpful to directly use the practical
measurement IðkÞ as the input to speed up convergence.39 By
allowing other spectral bands undergo a similar optimization
process, the whole Stokes parameters at each spectral band
can be inversed one by one. Since the DIP-SP method processes
all spectral bands individually, it can be applied to monochro-
matic, multispectral, and hyperspectral SPI schemes.

3.2 Neural Network Framework and Auto-stopping
Criterion

For the DIP method, different kinds of neural networks can be
employed.36,37 When the DIP method was debuted, Ulyanvov
et al.36 used an overparameterized autoencoder network (i.e.,
a network with more weights than the number of unknowns).
Other preliminary applications also inherit similar overparame-
terized networks.39–47 However, it is observed that the iteration
process cannot stop automatically, since loss function does not
monotonously decrease with the iterations. The iteration must
be manually stopped in time when the loss begins to increase.
It is critical to stop the iteration at a reasonable convergence
point in a timely manner. To avoid early stopping or any other
further regularization, an underparameterized network, deep
decoder, was proposed by Heckel and Hand,38 due to its resem-
blance to the decoder part of the autoencoder. The deep decoder
does not involve convolutions, and has a concise structure that
makes itself an image model with a lower-dimensional descrip-
tion. Since the underparameterized network provides a barrier to
overfitting, it can enhance the regularization of inverse prob-
lems. However, its representation ability on high-dimensional
images with complex details lacks evidence.

To ensure the feasibility of our methods, we elect to use the
overparameterized network for performance verification (see
discussion in Sec. 5). Specifically, a combination of Unet54

and ResNet,55 termed as modified Res-Unet56 (Note 3 in the
Supplementary Material), is employed, as shown in Fig. 2(b).
While the Unet is a neat end-to-end convolutional neural net-
work for multiscale feature extraction from input images,54 the
Res-Net with skip connection can avoid overfitting.55 Therefore,
to prevent the over-parameterized Res-Unet from auto-stopping
at an early stage, an autostopping criterion (further regulariza-
tion) must be built. Since the SPI reconstruction is to obtain the
spectral images of Stokes parameters, the structural similarity
(SSIM) and peak signal-to-noise ratio (PSNR) are two necessary
metrics to evaluate the reconstruction quality. Therefore, we
build the autostopping criterion by combining the SSIM and
PSNR as follows:

jhfSSIMgpþq
p i − hfSSIMgpp−qij ≤ ε1; (15a)

jhfPSNRgpþq
p i − hfPSNRgpp−qij ≤ ε2; (15b)

where p is the number of iterations, q is the interval of adjacent
iterations for average, and ε1 and ε2 are two small values for
stopping. We let the iteration process stop when both Eqs. (15a)
and (15b) are satisfied simultaneously. As the criterion considers
the average SSIM and PSNR through a series of adjacent q iter-
ations, it can avoid the unstable alarm from seldom-rising loss
points that cannot easily be distinguished by manual inter-
vention.

4 Implementations and Results

4.1 Competitive Algorithms and Evaluation Metrics

In this section, the performance of the proposed DIP-SP in
Eq. (13) is verified by extensive simulations and experiments.
In addition, the unconstrained DIP method is also executed for
comparison. These DIP methods are implemented with Python
version 3.6.13 on the PyTorch 1.9.0 platform. The adaptive mo-
ment estimation (Adam) optimizer with a learning rate of 0.01 is
used to iteratively update the weights and biases. For compari-
son, we also implement the CS methods in Eq. (8) with TV
regularization and with the same SP, respectively. The TwIST49

is selected as the solver. For convenience, we term these two
algorithms as the TwIST-TV and TwIST-SP, respectively. It is
found that, for achieving the best results, the regularization
parameter should be manually tuned to τ ¼ 0.1 and the number
of iterations in the minimization step in each TwIST iteration be
set at 4. All implementations use a machine equipped with
AMD Ryzen 7 3700X 8-Core CPU with 16 GB RAM and
NVIDIA GeForce GT 1030 GPU.

Two widely quantitative image quality assessment metrics,
the PSNR and SSIM, are used to compare the performance.
Both of them are spatial measurements, and the higher values
indicate spatial reconstruction is good. In addition, the recon-
structed spectropolarimetric curves of selected areas are pro-
vided for qualitative evaluation. The root mean square error
(RMSE) between the GT and the reconstructed curve is used
to globally measure the reconstruction quality. The lower the
RMSE value, the less the distortion of the reconstructed curve.

4.2 Simulations

4.2.1 Simulation setting

To determine whether the DIP-SP adapts to a scene that has
spectropolarimetric curves with different vibration frequencies,
we select hyperspectral images from the public data set ICVL57

to manually feed polarization information with different vibra-
tion frequencies. The original hyperspectral images in the ICVL
have the spatial size of 1392 × 1300 with 361 spectral bands
from 400 to 850 nm at a step of 1.25 nm. To generate the con-
trollable polarized spectra with different vibration frequencies,
we simply use cosine and sine functions to modulate the spectra
S0. To reduce computation, we crop out the middle part with
the spatial size of 400 × 400 that include different objects as
the test scene, and just extract 100 spectral bands at a step of
4.5 nm for simulations.

The measurement of the encoded spectropolarimetric data
cube is generated following the forward-imaging model in
Eq. (2). We let the thickness be d ¼ 1.1 mm and the fast-axis
orientation be θ ¼ 22.5° (optimal selections are discussed in
Sec. 4.1). Then the practical value of measurement matrix
MðkÞ is derived from Eq. (4). For the TwIST-TV, TwIST-SP,
and the unconstrained DIP methods, the practical value is nec-
essary and used for reconstruction. However, for the proposed
DIP-SP method, the measurement matrix MðkÞ is the optimiza-
tion objective, as described in Eq. (13). To validate the robust-
ness of DIP-SP, we, by design, let the initialization of DIP-SP
method have a random deviation of a maximum of 3% from
the practical value (its tolerance is discussed in Sec. 5). In ad-
dition, to mimic practical measurements as much as possible,
the additive Gaussian noise of zero mean μ ¼ 0 with low and
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high standard deviations of σ ¼ 0.05 and σ ¼ 0.2, respectively,
are added to the normalized measurements for comparison.

4.2.2 Simulation results

Figure 3 shows the reconstructed images of Stokes parameters
(S0, S1, S2, and S3) at the spectral band of 550 nm under the
two noise levels (σ ¼ 0.05 and σ ¼ 0.2), respectively. It can
be seen that for CS methods, while the TwIST-TV performs
the worst, the TwIST-SP is sensitive to noise perturbation. For
the DIP methods, the unconstrained DIP method is totally
invalid. In contrast, the DIP-SP method achieves the best results
at any noise level. For the intensity image S0, the PSNRs of
TwIST-SP and DIP-SP decrease about 6.35 and 5.11 dB, and
the SSIM decreases about 0.052 and 0.051, respectively, from
the low-noise level (σ ¼ 0.05) to the high-noise level (σ ¼ 0.2).
For all the polarization images (S1, S2, and S3), the PSNRs de-
crease about 5.5 dB and 4.8 dB, and the SSIM decreases about
0.046 and 0.044, respectively. However, the DIP-SP method still
achieves high-quality reconstruction at the high-noise level.

Figure 4 shows the reconstructed average spectral curves of
all polarization parameters over a homogeneous area of
5 pixels × 5 pixels; their average absolute errors and RMSEs
relative to the GT are listed in Table 1. It is found that both
the TwIST-TV and the unconstrained DIP methods are almost
invalid at any noise level. Even though the spectropolarimetric
curves of TwIST-SP approximate to the GT just at the low-
noise level (σ ¼ 0.05), they have obvious spectral distortions.
Although both the TwIST-SP and DIP-SP methods degrade with
the increase of noise, the results of DIP-SP method still conform
well to the GT. When the initialization is equal to the practical
value of the measurement matrix, the average absolute errors
of the reconstructed Stokes parameters from the DIP-SP are
3 × 10−4 at the low-noise level (σ ¼ 0.05) and 6 × 10−4 at
the high-noise level (σ ¼ 0.2). If the initialization has the
random deviation of a maximum of 3%, the average error of
reconstruction is less than 0.01, still within the tolerance range,
as shown in Table 1. In summary, the DIP-SP method is most
robust to the noise perturbation and spectral vibration attribute

to the use of the SP constraint as well as the self-calibration of
measurement matrix MðkÞ. More detailed analyses about the
influence of the spatial resolution and spectral resolution on
the DIP-SP reconstruction are presented in Note 4 in the
Supplementary Material.

Figure 5(a) shows the reconstructed images of Stokes param-
eters (S0, S1, S2, and S3) just using TwIST-SP and DIP-SP
methods over the spectral bands of 450, 550, and 650 nm,
respectively, at the low-noise level (σ ¼ 0.05). As can be seen,
the results of DIP-SP preserve more features across the spectral
bands, and the results of TwIST-SP have obvious artifacts. The
average PSNRs and SSIMs of DIP-SP in each band are higher
than those of the TwIST-SP, respectively, by 9.9 dB and 0.078
for the S0 images, and by 10.52 dB and 0.073 for (S1, S2, and
S3) images.

Similarly, Fig. 5(b) shows the reconstructed images of Stokes
parameters (S0, S1, S2, and S3) at the high-noise level (σ ¼ 0.2).
The images of TwIST-SP exhibit evident artifacts, especially on
the white wall. In contrast, the images of DIP-SP retain clearer
details and have the best quality. The PSNR and SSIM of DIP-
SP are better than those of the TwIST-SP by 10.95 dB and 0.092
for the S0 images and by 10.52 dB and 0.091 for (S1, S2, and S3)
images.

4.3 Experiments

4.3.1 Miniature optically replicating and remapping imaging
spectropolarimeter

In this work, we let the imaging spectrometer in Fig. 1(a) be our
snapshot ORRIS,58 then the SPI system become a snapshot
optically replicating and remapping imaging spectropolarimeter
(ORRISp).59 The passive SR-PM is used to encode the spectro-
polarimetric images. The ORRIS is used to obtain the spectro-
polarimetric images encoded by the SR-PM. However, our
pioneer prototypes of ORRIS58 and ORRISp59 are lengthy due
to the cascaded imaging objective lens (OL), field stop, and col-
limating lens. These optical elements are mainly used to prevent
adjacent subimages of lenslet array (LA) from overlapping.

Fig. 3 Simulated results for the reconstructed images of full-Stokes parameters (S0, S1, S2, and
S3) at the spectral band of 550 nm from different algorithms: TwIST-TV, TwIST-SP, DIP, and
DIP-SP under the two noise levels (σ ¼ 0.05 and σ ¼ 0.2). Average PSNR and SSIM relative to
the GT over all 100 spectral bands are presented just below each image.
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Fig. 4 Simulated results (TwIST-TV, green dashed-dotted line; TwIST-SP, blue dashed line; DIP,
purple dotted line; DIP-SP, red star-marked dotted line; GT: black solid line) for the average
spectropolarimetric curves and error curves over a homogeneous area of 5 pixels × 5 pixels.
The Stokes parameters (S0, S1∕S0, S2∕S0, and S3∕S0) are in the left column and derived angle
of polarization (AOP), degree of linear polarization (DOLP), degree of circular polarization
(DOCP), degree of polarization (DOP) in the right column, respectively.

Table 1 The average absolute errors and RMSEs of spectropolarimetric curves (TwIST-TV, TwIST-SP, DIP, and DIP-SP) relative to
the GT.

σ

Average absolute error RMSE

S0 S1 S2 S3 AOP DOLP DOCP DOP S0 S1 S2 S3 AOP DOLP DOCP DOP

TwIST-TV 0.05 0.187 0.203 0.196 0.041 4.5 0.22 0.04 0.22 0.286 0.369 0.363 0.072 6.3 0.32 0.08 0.33

0.20 0.436 0.245 0.243 0.086 11.2 0.31 0.09 0.32 0.413 0.482 0.480 0.142 17.1 0.46 0.14 0.47

TwIST-SP 0.05 0.034 0.078 0.062 0.024 2.1 0.07 0.02 0.07 0.058 0.134 0.128 0.043 3.1 0.14 0.05 0.15

0.20 0.081 0.114 0.127 0.059 5.4 0.13 0.04 0.13 0.113 0.252 0.243 0.082 7.4 0.26 0.09 0.27

DIP 0.05 0.302 0.283 0.163 0.162 21.4 0.24 0.17 0.29 0.355 0.422 0.238 0.194 32.3 0.35 0.20 0.40

0.20 0.486 0.481 0.242 0.263 30.9 0.31 0.27 0.35 0.616 0.580 0.351 0.307 46.2 0.48 0.33 0.58

DIP-SP 0.05 0.003 0.004 0.004 0.002 0.2 0.008 0.002 0.01 0.007 0.014 0.014 0.005 0.8 0.012 0.005 0.01

0.20 0.004 0.006 0.006 0.003 0.5 0.012 0.003 0.02 0.015 0.026 0.025 0.008 1.3 0.024 0.008 0.03
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Fig. 5 Simulated results for the reconstructed images of full-Stokes parameters (S0, S1, S2, and
S3) over the spectral bands of 450, 550, and 650 nm from the TwIST-SP to DIP-SP methods,
respectively. The PSNRs and SSIMs relative to the GT at each spectral band are provided below
each image. (a) Low-noise level (σ ¼ 0.05) and (b) high-noise level (σ ¼ 0.2).
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Actually, the size of the subimage can be controlled by inserting
a baffle array (BA) between the LA and the focal plane continu-
ous variable filter (CVF), as shown in Fig. 6(a). In this case, the
fore optic is removed for miniaturization and then the optical
flux is improved, largely due to the reduction of multiple reflec-
tion surfaces. In addition, the previous DR-PM with the double
MORs is now replaced by the SR-PM with the single MOR for
further simplification and easy alignment and assembly. Finally,
a miniature ORRISp is developed, which is termed as MINI-
ORRISp. Its detailed design, calibration, and testing can be
found in reference.60 Correspondingly, the working spectral
range is extended from 450 to 750 nm for the pioneer ORRISp
to 400 to 850 nm for the MINI-ORRISp due to the remove
of achromatic quarter-wave plate. More important, the spatio-
spectrally resolved 3D data cube (x, y, and λ) of full Stokes
parameters (S0, S1, S2, and S3) can be simultaneously obtained
by the MINI-ORRISp prototype, relative to the pioneer ORRISp
prototype that just focused on the linear Stokes parameters
(S0, S1, and S2).

Figure 6(b) shows the final prototype of MINI-ORRISp.
The MOR is made from quartz, with a thickness of d ¼ 1.1 mm.
The HLP is an ultrabroadband wire grid polarizer. They are as-
sembled in the same anodized aluminum lens tube. The LA
is 9 × 9 array with a pitch of 3 mm and a focal length of
9 mm. The row direction of the LA has an inclination angle
of 6.34° relative to the CVF’s wave band. The size of the
CVF is 25 mm × 30 mm. The center wavelength varies along
the 25 mm side in the global y axis. The FPA is a CCD array
with the spatial resolution of 3232 pixels × 4864 pixels and the
pixel size of 7.4 μm × 7.4 μm. The volume of MINI-ORRISp
prototype is largely miniaturized to 80 mm (length) ×
70 mm (width) × 70 mm (height), and the weight is reduced
to 700 g. Within a single exposure time, the MINI-ORRISp
can get 81 raw subimages. After registering all subimages to
the center one, we can remap out the encoded spectropolarimet-
ric images I with the spatial resolution of ðNx ¼ 400Þ × ðNy ¼
400Þ over Nλ ¼ 72 spectral bands. The spectral resolution at
each spectral band is around 3.5% of the central wavelength.
For the LA arrangement, two main considerations come into
play. The first one is the trade-off between spatial and spectral
resolution. The second is how to maximize the utilization of
the CVF and effective CCD area while avoiding complex
processing. According to the principle of optical replication

and remapping,58 the spectral resolution increases with the num-
ber of lenses in each row of the LA, but the spatial resolution
(Nx and Ny) will decrease due to the limited area of the CCD.
Therefore, a reasonable arrangement of the LA must be a com-
promise between spatial and spectral resolution. Based on the
above considerations, the size of the subimage is designed to
be 400 (Nx) pixels × 400 (Ny) pixels, and the LA is designed
to be 9 × 9. It should be noted that, to maximize the use of the
CVF and CCD, a portion of LA on the marginal area is delib-
erately designed to be outside the effective imaging area.
Specifically, the upper half of the first row of the LA and the
lower half of the last row of the LA do not cover the CVF, which
means these parts do not participate in the replication of subi-
mages and continuous filtering. Therefore, after remapping, the
9 × 9 LA corresponds to 8 × 9 spectral bands.

4.3.2 Experimental setting

We first use the MINI-ORRISp to record the encoded spectro-
polarimetric images I of a real-world scene in a single shot and
then apply both the TwIST-SP and DIP-SP methods to decode a
spatiospectrally resolved 3D data cube of 400ðNxÞ × 400ðNyÞ ×
72ðNλÞ for each of four Stokes parameters (S0, S1, S2, and S3),
respectively. For the two reconstruction methods, the measure-
ment matrix MðkÞ of system is roughly calibrated using an
He–Ne laser and a commercial polarization analyzer (Thorlabs,
PAX1000) pointing to several field points of the PM. Other field
points and spectral bands are simply interpolated and derived as
the initializations. Predictably, the performance of the TwIST-SP
method will be degraded further relative to the simulation
experiments, in which the practical measurement matrix has
been exactly employed for reconstruction. In contrast, the
performance of the DIP-SP method will be retained, since the
measurement matrix can be self-calibrated during iteration. In
addition, a diffuse reflection standard whiteboard is employed
as a white reference for each test scene to remove the disturb-
ance of ambient light during acquisition. A monochromatic
polarization camera is built and calibrated to obtain the ground
truth images of full Stokes parameters. It consists of a high-
resolution camera modulated by a rotatable linear polarizer
and filtered by a bandpass filter centered at 550 nm with a band-
width of 10 nm. A standard fiber spectrometer with a fiber probe
is used to sample the GT of spectrum S0 for the selected area.
An RGB camera is employed to acquire the GTof color images.
We let the polarization camera, RGB camera, and fiber spec-
trometer work with the best settings to get the data as GTs.

4.3.3 Laboratory scene

For the laboratory scene, the experimental setup is shown in the
upper left of Fig. 7. A color-checker covered with linear polar-
izers and circular polarizers of different polarization directions
is used as a test scene in the upper right of Fig. 7. The illumi-
nation source is a fluorescent lamp. The MINI-ORRISp, the
polarization camera, the RGB camera, and the fiber spectrom-
eter observe the color-checker at the same time. The MINI-
ORRISp operates at two exposure time of 150 and 60 ms for
noisy comparison. For all measurements, the longer the expo-
sure time, the higher the signal to noise ratio (SNR).

The lower part of Fig. 7 shows the reconstructed Stokes
parameter images (S0, S1, S2, and S3) at 550 nm with the statistic
PSNR and SSIM results for each algorithm. Obviously, the
reconstruction quality of two methods at the long exposure time
is better than that at the short exposure time. While the DIP-SP

Fig. 6 Scheme of our miniature snapshot ORRISp. (a) Optical
scheme and (b) prototype. MOR, multiple-order retarder; HLP,
horizontally linear polarizer; AA, aperture array; LA, lenslet array;
BA, baffle array; CVF, continuous variable filter; and FPA, focal
plane array.

Han et al.: Deep image prior plus sparsity prior: toward single-shot full-Stokes spectropolarimetric imaging…

Advanced Photonics Nexus 036009-10 May∕Jun 2023 • Vol. 2(3)



method achieves better results, the TwIST-SP method is very
sensitive to noise perturbation at any exposure time. This phe-
nomenon is consistent with the simulation results in Sec. 4.2.

Figure 8 plots the average spectropolarimetric curves (S0,
S1∕S0, S2∕S0, and S3∕S0) of three selected areas (a, b and c with
5 pixels × 5 pixels) that are shown in the upper right of Fig. 8.
Only the S0 spectra have the GTs that captured using the fiber
spectrometer. Clearly, the DIP-SP is champion for the S0 spectra
at each exposure time. In contrast, the TwIST-SP is barely
acceptable only after a long exposure time and is futile at the
short exposure time. Unsurprisingly, the spectropolarimetric
curves (S1, S2, and S3) are slowly varying, mainly because
the selected areas are almost fully polarized by the covered
polarizers. We let the spectropolarimetric curves from the
DIP-SP at the long exposure time of 150 ms be references; then
the RMSEs of other results are calculated in Table 2. Clearly,
the performance of TwIST-SP at any exposure time is worse
than that of the DIP-SP at the short exposure time.

4.3.4 Outdoor scene

In the laboratory scene, we have verified the performance of our
system and algorithms on a fully polarized scene with different
exposure time. However, outdoor natural scenes are totally
different due to the lack of a high degree of polarization and
the fullnes of a complex background. We photographed a car
parked on the road on a sunny day, with the exposure time
decreased to 50 ms. Figure 9 shows the reconstructed images
of Stokes parameters (S0, S1, S2, and S3) at 480, 550, 600,
and 700 nm, respectively. The PSNR and SSIM relative to the
GT captured by the polarization camera at 550 nm are calculated
in Table 3.

As can be seen, for the TwIST-SP method, the details of
images (S1∕S0, S2∕S0, and S3∕S0) are blurry in each narrow
spectral band caused by noise. The DIP-SP has the better
reconstruction quality in all bands. The spectropolarimetric

curves on the vehicle sunroof are plotted. Only the spectra
S0 of the DIP-SP are consistent with the GT that is obtained
using the fiber spectrometer. The TwIST-SP result suffers from
large vibrations and deviations. Since the sunroof has high re-
flection, the reflected spectra are partially polarized and slowly
varying, as indicated by the spectropolarimetric curves (S1∕S0,
S2∕S0, and S3∕S0) from the DIP-SP method. The value of each
curve at 550 nm complies with the GT from the polarization
camera. Since the circular polarization component of nature
scene is very weak, both the hardware and software should have
good robustness to noise.

To demonstrate the necessity of our MINI-ORRISp as well
as the DIP-SP method over previous methods with rotatable
polarizers, the application on real-time acquisition of dynamic
scenes is presented in Note 5 and Fig. S4 in the Supplementary
Material as well as in Video 1, URL: https://doi.org/10.1117/
1.APN.2.3.036009.s1.

5 Discussions

5.1 Optimal Free Parameters ðθ; dÞ
For the SR-PM scheme with the single MOR, the fast-axis
orientation θ and the thickness d of the MOR are the two free
parameters to encode spectra. The reconstruction quality of
the DIP-SP depends on these parameters. Using the simulation
data in Sec. 4.2, the PSNR and SSIM as functions of the two
parameters, respectively, are plotted in Fig. 10. It is found
that the reconstruction quality (PSNR and SSIM) slightly de-
creases with the increase of d and sensitively vibrate with θ.
The optimal values of θ are 22.5°, 67.5°, 112.5°, and 157.5°.
So, we have set θ ¼ 22.5° in simulations and real-world experi-
ments. We have selected d ¼ 1.1 mm because the recon-
struction quality is relatively high and we have a quartz retarder
on hand.

Fig. 7 Lab scene experiment. Experimental setting (top left) and the color-checker covered with
different polarizers as test scene (top right). (a) The red-square mark area is the linear polarizer;
(b) the yellow-square mark area is the left-circular polarizer; and (c) the azure-square mark area
is the linear polarizer. Lower parts are reconstructed Stokes parameters (S0, S1, S2, and S3)
at 550 nm from the TwIST-SP and DIP-SP methods at two exposure time of 60 and 150 ms, re-
spectively.
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Figure 11 shows the tolerances of the initialization values
ðdi; θiÞ from the practical values ðdp; θpÞ, respectively. That is,
for the initialization values ðdi; θiÞ within the tolerances, the
system can be self-calibrated to the practical value ðdp; θpÞ
very well. Obviously, the nominal value (dn ¼ 1.1 mm, θn ¼
22.5°) is totally embraced in the range of the initialization

values. That means we can directly let the nominal values be
the warm initialization values under the corresponding noise
levels. However, the tolerances are mainly subject to noise per-
turbation. The tolerances are maximized to (0.053 mm, 15.19°)
at (dp ¼ 1.12 mm, θp ¼ 23°) without noise perturbation and
they are minimized to (0.04 mm, 5.83°) at (dp ¼ 1.14 mm,

Fig. 8 Lab experimental spectropolarimetric curves (S0, S1∕S0, S2∕S0, and S3∕S0) of the three
selected areas that are shown in the top right of Fig. 7. (a) Red-square mark area; (b) yellow-
square mark area; and (c) azure-square mark area.

Table 2 Lab experimental results for the RMSEs of reconstructed spectropolarimetric curves relative to the results from the DIP-SP
method at the long exposure time of 150 ms.

Time

(a) (b) (c)

S1 S2 S3 S1 S2 S3 S1 S2 S3

TwIST-SP 150 ms 0.015 0.014 0.011 0.015 0.015 0.011 0.013 0.013 0.010

60 ms 0.055 0.056 0.049 0.056 0.059 0.051 0.051 0.050 0.046

DIP-SP 60 ms 0.008 0.007 0.006 0.009 0.008 0.007 0.008 0.008 0.007
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θp ¼ 25°) under the highest noise levels. The tolerance on the
thickness is tighter and more sensitive to noise than that on
the fast-axis orientation, mainly because even a small error
on the thickness dwill incur considerable error on the retardance
δ of the thick retarder. To let the DIP-SP method adapt to general
error and noise cases, it is suggested to roughly calibrate the
measurement matrix MðkÞ with elementary setup and operation.
In our above experimental results, the measurement matrixMðkÞ

has been roughly calibrated using an He–Ne laser and a com-
mercial polarization analyzer (Thorlabs, PAX1000) pointing to
several field points of the PM. Other field points and spectral
bands are simply interpolated and derived as the initializations.
In the future, it will be necessary to maximize the tolerance by
designing advanced regularization or network and then save
the rough calibration procedure.

5.2 Overparameterized or Underparameterized
Networks

The network frameworks may influence the reconstruction per-
formance. In this section, we compare the performance of an
overparameterized network (Res-Unet56) and an underparame-
terized network (deep decoder37) using the simulated scene in
Fig. 3. Figure 12 shows the reconstructed PSNR and SSIM of
the two networks over the number of iterations, as well as the
reconstructed S0 images at 550 nm every 500 iterations. It is
found that, without the SP constraint, the reconstruction results
of the overparameterized and underparameterized networks
tend to be trapped in a pseudo-solution. In this case, as expected,
the convergence of overparameterized network first reaches
a higher value, then drops to a lower value. Although the con-
vergence of the underparameterized network does not drop in

Table 3 Outdoor experimental results for the average PSNRs and SSIMs at 550 nm of each method.

PSNR (dB) SSIM

S0 S1∕S0 S2∕S0 S3∕S0 S0 S1∕S0 S2∕S0 S3∕S0

TwIST-SP 25.48 25.19 25.16 24.83 0.859 0.852 0.851 0.849

DIP-SP 35.42 34.83 34.60 33.89 0.946 0.942 0.941 0.935

Fig. 9 Outdoor scene experiment. The reconstructed results at the exposure time of 50 ms for the
CIE color fusion image S0 and the gray images (S1∕S0, S2∕S0, and S3∕S0) over the four spectral
bands of 480, 550, 600, and 700 nm, respectively. The images from the polarization camera at
550 nm are used for the GT. The spectropolarimetric curves (S0, S1∕S0, S2∕S0, and S3∕S0) of
the selected point on the vehicle sunroof are plotted, where only the spectrum S0 has the GT from
the fiber spectrometer.
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Fig. 10 Dependence of reconstruction quality individually on the fast-axis orientation θ and
the thickness d of the MOR in the SR-PM scheme using the DIP-SP method.

Fig. 11 (a) and (b) The tolerances of the initialization values ðdi ; θi Þ from the practical values
ðdp ; θpÞ of retarder, respectively, under different noise levels.
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expectation, the reconstructed quality is limited to the lower
value. That is, both of them cannot fit the image well. In con-
trast, with the help of the SP constraint and self-calibration op-
eration, the reconstructed PSNR and SSIM of the two networks
can approach the best results. In this case, both the overparame-
terized and underparameterized networks can converge very
well, and there are no overfitting phenomena, even with a large
number of iterations. It is interested to found that the under-para-
meterized network needs more than 3000 iterations to converge,
and the restored S0 images become clear at around 3500 itera-
tions. In contrast, the overparameterized network starts to con-
vergence just after 1000 iterations, and the restored S0 images
become definite just after 1500 iterations. That is, the over-
parameterized network (Res-Unet) converges faster than the
under-parameterized network (deep decoder) for our SPI
problem, perhaps because the DIP representation ability of the
underparameterized network on high-dimensional images is
not sufficient.

5.3 Auto-stopping Parameters

For the DIP-SP method, the iterations can be stopped automati-
cally according to the auto-stopping criterion in Eq. (15). As
shown in Fig. 12, both the PSNR and SSIM approach to stably

smooth values after 1000 iterations for the over-parameterized
network with the SP constraint. To let the DIP-SP automatically
stop at the optimal iterations of 1500 nearby, we have set the
parameters q ¼ 5, ε1 ¼ 10−4, and ε2 ¼ 10−3 in Eq. (15), respec-
tively. These parameters have been used commonly in simula-
tions and real-world experiments. As a result, the optimization at
each spectral band experiences about 3000 iterations for the lab
data and around 5800 iterations for the outdoor data in Sec. 4.

5.4 Acceleration Strategy

As shown in Sec. 3.1, the forward-imaging model and inversion
are mainly illustrated at the k’th spectral band for simplification.
In practice, although we can input the images of all spectral
bands simultaneously into the network according to Eq. (5), this
would increase the calculation amount and require mass
memory. To reduce computation cost, the images can be spa-
tially split into a series of small image patches. But an evident
seam would appear by stitching the reconstructed image patches
to nonuniform reconstructions.

Hereby, we recommended processing the images of all spec-
tral bands one by one via a similar procedure. As a result, the
DIP-SP method reasonably adapts to hyperspectral, multispec-
tral, and monochromatic imaging mechanisms. However, if the

Fig. 12 History of PSNR and SSIM values of the reconstruction results by the overparameterized
network (Res-Unet) and underparameterized network (deep decoder) with respect to the itera-
tions. The inset represents the S0 image every 500 iterations (the upper and lower rows are from
the underparameterized and overparameterized network, respectively).
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iteration time of the first spectral band is t, the total time would
be (Nk × t), which is the accumulation of Nk spectral bands. To
speed up convergence and reduce iteration time, an acceleration
pipeline is proposed in Fig. 13. It is assumed that the images of
adjacent bands share similar semantic features. Then, the opti-
mized mapping functionGðk−1Þ

Θ̂
ð·Þ for the (k − 1)’th band is con-

sidered the prior initial mapping function GðkÞ
Θ ð·Þ for the k’th

band. In addition, it is found that just allowing the last two layers
of the optimized network Gðk−1Þ

Θ̂
ð·Þ to participate in training for

the k’th band is enough to further reduce iterations. The iteration
statistics for the simulated and experimental data are listed in
Table 4. As can be seen, the first spectral band needs full
iterations; subsequent spectral bands just need fewer iterations.
As a result, the total iteration time is reduced around 45 times
relative to (Nk × t).

However, the total reconstruction time of the DIP-SP method
remains a stumbling block for real-time reconstruction, although
we have devised the acceleration strategy. The iterations would
increase linearly to the spatial resolution and spectral bands be-
cause each spectral band is processed individually. Interesting
topics for future work include developing more efficient accel-
eration methods. While lightweight networks61 with higher
fitting ability are desirable, optical neural networks may be a
possible way for such a fast reconstruction task.62,63

6 Conclusions
The real-time acquisition of a spatiospectrally resolved 3D data
cube ðx; y; λÞ for each of four Stokes parameters is challenged.
In this paper, we have proposed the simplest passive SR-PM
with a single MOR for the full-Stokes SPI with compressed
sampling for the first time. As a result, the alignment and
assembly errors from the DR-PM with double MORs are
avoided, and there is a reduction in system bulk and cost.
The SR-PM can be easily incorporated into general imaging
spectrometers. As an instance, we have successfully integrated

the SR-PM into our snapshot ORRIS to form the MINI-ORRISp
prototype. After building the forward-imaging model and
incorporating an a priori assumption of sparse representation,
we have developed a novel advanced reconstruction method,
DIP-SP, based on the untrained network. The DIP-SP can
achieve the self-calibration of measurement matrix and is very
robust to noise perturbation. Extensive results on simulation and
real-world data captured by the MINI-ORRISp have verified
the outperformance of our full-Stokes SPI scheme.

It is worth pointing out the advantages of the DIP-SP method.
First, it makes the encoding and decoding of the simplest passive
SR-PM scheme become feasible. Second, the GT does not
appear in the inverse problem, and the optimization process is
only driven by the measurement at each spectral band. That
is, the DIP-SP does not need an additional data set for training
and has the potential capability to face diverse applications.
Third, the DIP-SP removes the time-consuming and interaction-
intensive search for a scene-dependent regularization parameter
that is used in the TwIST-based methods. Fourth, since the
forward-imaging model is used for optimization, the output of
the neural network is physically constrained and is interpretable.
Last, we do not need to accurately calibrate the measurement
matrix; roughly preliminary polarization calibration is acceptable.
The nominal value can serve as a warm initialization if the noise
level is not too high. Furthermore, the DIP-SP method also can be
applied to the DR-PM schemes by modifying the arguments
of measurement matrix MðkÞ in Eq. (7). These advantages are
helpful for promoting the development of a miniature SPI system
using free-space optical components12,31,32,59 as well as chip-scale
integration with silicon photonic circuits64 or metasurfaces.65–72
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